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What's a hyperelliptic curve, really?

Definition

A (smooth, projective, geometrically connected) curve C over a field K is
hyperelliptic if the canonical map is a 2-to-1 cover C — Q with Q of
genus 0.

Remark (char(K) = 0)

If Q(K) # 0, then Q = P} and C admits a K-model of the form
y? = f(x). Otherwise, g is odd and C has a model of the form

C_{aX2+bY2+c22:0

2 = f(X,Y,Z) CPragep(K)
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A twist of a curve C/K is another curve C'/K such that Gz ~ C..

There is a one-to-one correspondence

Twists(C/K)/{K — isomorphism} <— H'(T x, Autx(C))




Twists of curves

How does the correspondence work?



Twists of curves

How does the correspondence work?

If C % C'is a K-isomorphism, the corresponding cohomology class is

represented by
& Tk — Aut?(C)



Twists of curves

How does the correspondence work?

If C % C'is a K-isomorphism, the corresponding cohomology class is
represented by
& Tk — Aut?(C)
o = (e o
What about the other arrow, & — C&7



Twists of curves

How does the correspondence work?

If C % C'is a K-isomorphism, the corresponding cohomology class is
represented by
& Tk — Aut?(C)
o = (e o

What about the other arrow, £ — C¢? There's a recipe, but...



Twists of curves

How does the correspondence work?

If C % C'is a K-isomorphism, the corresponding cohomology class is
represented by
& Tk — AUtR(C)
o = (e o

What about the other arrow, £ — C¢? There's a recipe, but...

Using this naive approach, MAGMA was unable to find a planar model for

CE:y? = —x® 4+ ax™ — 28x5 + 28x% + 14x* 4 28x3 — 196x2 + 100x — 61
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Twisting non-hyperelliptic curves

Given C/K non-hyperelliptic (of genus > 3), there is a canonical
embedding

C—PH®(C,Qt) = P4

The automorphism group of C acts (by pullback) on the space of regular
differentials on C ~» we have a Galois-equivariant embedding of Auty(C)
in GL(H® (G, Q%)) = GLg(K)
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Twisting non-hyperelliptic curves

Suppose given a non-hyperelliptic curve C/K (of genus > 3) and a cocycle

¢ : Tk = Autge(C). Composing with Autz(C) — GLg(K), we obtain a
cocycle

§L : FK — GLg(?)

Algorithm

e By Hilbert 90, there exists M € GL,(K) such that

£L(0) =7(M71) - M.
@ M induces a linear map [M] : IP’%_I — IP’%_I.

@ The image [M](C) is a curve defined over K; from this, one easily
obtains equations for Ct.
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The hyperelliptic case

Suppose given a hyperelliptic curve C/K of genus g > 2 and a cocycle
£: Tk — Aute(C).

One can try to mimic the non-hyperelliptic case by embedding C in
projective space via higher powers of the canonical bundle. This can be
computationally expensive (H%(C, (Q2L)®?) has dimension 3(g — 1)).
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The hyperelliptic case

O Using the anti-canonical model of Q, embed Autz(Q) into GL3(K)
© Apply Hilbert 90 to split the cocycle, &,(0) = 7(M~1) - M.
© In this way we obtain Q%(X,Y,Z) = Q(M(X, Y, Z)), which fits into

_ 2.t

C

l I
I?
¢£

Q First guess:

C- {CZ(X, Y.Z)=0 _)C,:{Q(I\/I(X, Y,Z))=0
> = F(X,Y,Z) 2 = F(M(X.Y.Z))
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%

First guess:
o [amex, v, 2) = o
| =FM(X, Y, 2))

Theorem (L. — Lorenzo-Garcia)

There exist A € K, a finite extension L/K containing the coefficients of
AF(M(X,Y,Z)), and an element e € K* such that a K-model of C& is

given by

et? = [LK] trL/K()‘F(M(X Y Z)))

{Q(M(X Y,2Z)) =

where the trace is taken coefficientwise.
W




The hyperelliptic case

%

First guess:
o [amix. v, 2) =0
| 2= F(M(X,Y,Z))

Theorem (L. — Lorenzo-Garcia)

There exist A € K, a finite extension L/K containing the coefficients of
AF(M(X,Y,Z)), and an element e € K* such that a K-model of C& is

given by

et? = [LK] trL/K()‘F(M(X Y Z)))

where the trace is taken coefficientwise. \, L and e are all easy to compute.

{Q(M(X Y,Z)) =




SEIE

X+ Y>+2°=0
C: { + CP1112(Q)

2= X* 4+ v+ Z¢




Example

X2+ Y2+22=0
¢ {t2 Xt pvigp s © Pr11.2(Q)
€: Gal(Q()t/Q) = (o) — Autg(C)

o = [X,Y,Z, 8] [Y,Z,X, 1]




X2 +Y?2+27%2=0
C: {t2 _ x4 4y 7 CP1112(Q)
£: Gal(Q(¢)t/Q) = (o) — Aut@(C)
o = [X,Y,Z,t]—~[Y,Z,X,t]

X2+VY2+272=0

—3t2 = — 23(X* + Y* 4+ Z%) — 12XZ(XY + YZ + ZX + Y?)
+20(XY? + YZ3 — ZX3) + 16(XZ® — X3Y — Y32)
—12Y%(X? + Z?)

\




Thank youl



